
CS543 Final Report
Image Segmentation to Improve CycleGAN

Andrew Chen (aachen3) Patrick Cole (pacole2) Sameer Manchanda (manchan2)

1 Introduction

In recent years Generative Adversarial Networks (GANs) have become an effective way of generating a
sample of a distribution given a random latent variable as input [6]. This is done by modeling the problem as
a min-max optimization problem. The generator network is responsible for transforming images from the
latent space to the observed space, and the discriminator network discriminates between generated and true
examples. We want to train our generator to fool the discriminator, but we want to train the discriminator
to correctly identify true samples.

Furthermore, GAN architectures have been successfully adapted to image to image translation by mapping
the probability distribution of the input space to that of the output space. The generators accomplish this
by encoding the input space into some low dimensional distribution that represents key features in both
the input and output space and then decoding the output from the low dimensional distribution [3]. This
optimization technique has been applied to unpaired image to image translation in the CycleGAN paper [5].
The results have been impressive, but for some images the generator affects more of the image than originally
intended. We hypothesize that some spatial information about the object to be transformed is sometimes
incorrectly encoded and decoded when generating a sample, causing the transformation to “leak” out of the
intended object region. To solve this we propose using segmentation on the original image to obtain a mask
which will be used, with our generator output, to give the final output of our model. The idea is that the
mask received by segmentation will retain the spatial properties and improve our results.

2 Methods

2.1 CycleGAN Specification and Training

Let X denote a set of images that share a common characteristic, and let Y be another such set of
images. A standard CycleGAN model will learn two generators, G : X → Y and F : Y → X, such that
G(F (x)) ≈ x, x ∈ X and F (G(y)) ≈ y, y ∈ Y . The discriminators are denoted DX : X → [0, 1] and
DY : Y → [0, 1], whose goals are to classify whether these image belongs to the respective classes, X and Y .
From this we can construct an adversarial training model as follows:

min
G,F

max
DX ,DY

LGAN (F,Dx,X, Y ) + LGAN (G,Dy,X, Y ) + Lcyc(G,F,X, Y ) (1)

where the cyclic loss is defined as

Lcyc(G,F,X, Y ) = Ex∼p(X)

[
‖F (G(x))− x‖1

]
+ Ey∼p(Y )

[
‖G(F (y))− y‖1

]
, (2)

the GAN loss for a particular function and discriminator is defined as

LGAN (F,Dx,X, Y ) = Ex∼p(X)[Dx(x)] + Ey∼p(Y )

[
(1−DY (y)

]
. (3)

An additional loss term, called the identity loss can be added to suggest that multiple applications of a
generator will be equivalent to a single application of the generator.

Lid(G,F,X, Y ) = Ex∼P (X)

[
‖F (x)− x‖1

]
+ Ey∼p(Y )

[
‖G(y)− y‖1

]
. (4)

1



Figure 1: Generator and discriminator architectures

2.2 Mask R-CNN

Segmentation was used to detect objects that need to be transfigured (i.e. horse). We used a pretrained
Facebook Mask R-CNN to segment the image and create masks for each image [2]. The Mask R-CNN
architecture consists of two different segmentation stages and combines them to get the mask. The first stage
performs region of interest (RoI) proposal on the input image. A RoI is a specific patch in the image. Then,
the network predicts the class of the object and refines the bounding box around the object. Finally, the
network combines the proposal and bounding box to generate a mask.

2.3 Model Architecture / Implementation

2.3.1 Generator

The generator uses a Encoder-Decoder structure with ResNet style residual layers in the middle. This can
be seen in Figure 1. Below are the general structures of each block type inside the generator, i.e. “Down Block”,
“Res Block”, and “Up Block”. This was influenced by the architecture used in the original CycleGAN paper [5].

Down Block

1. Convolution 2d with a kernel size of 3 and stride of 2

2. Instance Norm

3. ReLU activation layer

Res Block

1. Reflection Pad the image by 1

2. Convolution 2d with a kernel size of 3

3. ReLU activation layer

4. Reflection Pad the image by 1

5. Convolution 2d with a kernel size of 3

6. Instance Norm

Up Block

1. Transposed Convolution 2d with a kernel size of 3 and stride of 2

2. Instance Norm

3. ReLU activation layer

2



Figure 2: Segmentation integrated with generator (Soft Mask)

2.3.2 Discriminator

The discriminator was heavily based off of a the Patch GAN discriminator that was used in the Cycle
GAN paper [5]. The discriminator is altered slightly from the reference discriminator which can be found on
the official git repository [4]. This will create a n× n output of patches with values for whether each patch
was real or fake. This architecture has been stated to perform just as well as a traditional discriminator, but
with the advantage of having significantly less parameters. This architecture can be seen in Figure 1 and
below the general structure of the “Conv Block” used can be seen.

Conv Block

1. Convolution 2d with a kernel size of 4 and a stride of 2

2. Instance Norm

3. ReLU activation layer

2.3.3 Soft Mask

We didn’t want to use a hard segmentation as a border between what was transformed and what remained
the same, so we developed a pipeline that we call “Soft Mask” which can be seen in Figure 2. The Mask
R-CNN portion of the pipeline used the pretrained model from the FAIR Mask R-CNN team [1]. Using that
mask, we found the region of the object in the input image to the generator. The mask is applied on the
output of the generator and the resulting region is added to the output of the generator. Then, the result of
the generator is averaged with the previous output to create the soft mask.

3 Results

3.1 Computation and Photo Acquisition

For training and testing we utilized the “AISE TensorFlow NVIDIA GPU Notebook” instance on Google
Cloud compute configured with the NVIDIA Tesla V100 GPU and 8 VCPUS. The Monet photos and
photographs were gathered from a Flickr source by the UC Berkeley team who originally worked on the Cycle
GAN project. They also gather the zebra and horse photos from the ImageNet data set. They have made the
data publicly available so we used these for our training and testing purposes. Note, for training purposes
and the limited computational resources 128× 128 images were used for training, but the default images are
much larger so our results may seem blurry because they are being scaled up.

3



3.2 monet2photo

• Monet: Training data (1073 images) Testing data (122 images)

• Photos: Training data (6288 images)Testing data (752 images)

Figure 3: Several good examples of Monet paintings converted to photographs from our test set.

Figure 4: Several good examples of photographs converted to Monet paintings from our test set

It took approximately 23 hours to train the model for 200 epochs with a learning rate of 2e-4 and Adam
optimizer with beta values (0.5, 0.999). The learning rate linearly decayed from 2e-4 to 0 between epochs 100
and 200. Some losses were more important to the actual output so they were weighted differently. The GAN
loss given by Equation 3 had no weight to it, the Cyclic loss given by Equation 2 was increased by a factor of
10 and then the Identity loss given by Equation 4 was increased by a factor of 5. Identity loss was used for
this particular dataset rather than segmentation because there is no clear advantage of using segmentation
for the problem of style transfer due to the fact that it is desired for the whole image to be effected. Identity
loss was used instead because it introduces a penalty on the output images color composition by enforcing
that the generated image must still be relatively close to the input, but with less weight than the cyclic loss.

4



Figure 5: Several bad examples of Monet paintings converted to photographs from our test set. Generally,
the GAN darkens the impressionist works; however, this leads to issues when converting foliage or mist.

Figure 6: Two bad examples of photographs converted to Monet paintings from our test set. Notice the
issues pertain to objects in the foreground.

In Figure 3 and Figure 4 we display some of the better results, while in Figure 5 and Figure 6 we display
some failure cases. We will discuss/analyze the results of the failure case in the discussion section.

3.3 horse2zebra

• Horse: Training data (1067 images) Testing data (120 images)

• Zebra: Training data (1334 images) Testing data (140 images)

First, we generated masks for the training images using available Mask R-CNN code; selecting the top
two masks per image [1]. After generating masks, we trained the CycleGAN, alternating between optimizing
discriminator and generator parameters for 200 epochs, with a learning rate of 2e-4, λ = 10, and the Adam
optimizer. The learning rate was linearly decayed from 2e-4 to 0 between epochs 100 and 200. The identity
loss was not used because we felt it would adversely effect the resulting horse and zebra images by forcing
the color to be similar. In Figure 7 and Figure 8 some results are shown from the test set used. Figure 9 and
Figure 10 show some of the failure cases that will be discussed in further detail in the discussion section.

4 Discussion

4.1 monet2photo

When analyzing the data sets we noticed that the Monet paintings were mostly landscape photos, while
the photographs were pretty wide spread and not constricted to just one category. This means that we were
able to perform some visually appealing style transfer from one landscape to another. Such results can be
seen in Figure 3 and Figure 4.

There were were a few pitfalls, in part due to the training data with which we were working. Most of the
Monet photos were landscapes, and any specific objects appeared in a much smaller scale in the background.
In Figure 6, the photos were of a woman and a little fox. Since these photos were mainly focused on one
subject with different detail than a landscape photograph, the transformation appeared to blur the image.

5



Figure 7: Several good examples of horse photographs converted to zebra photographs from our test set

Figure 8: Several good examples of zebra photographs converted to horse photographs from our test set

Another issue with the translation of Monet painting to photos seemed have to do more with the color
pallete of the input painting than the focus. The main problem cases seemed to be where the input colors
were unnatural in real life photos. In Figure 5 it can be seen that the the first image seems to require a mist
of some sort, but it ends up translating it to a dense fog. This could be due to the fact that the input colors
were not representative of real life mist. The second paintings contained bright colors, and the output picture
seemed very red and unrealistic. One solution for this could be to add a new loss that constrains regions in
the image to have the same general color as their inputs.

4.2 horse2zebra

There are similar number of horse and zebra pictures in the dataset; however, we found the horse to zebra
conversion was better than the zebra to horse. We hypothesize that generating zebras is easier because they
are always striped black and white, while there are multiple ways to color a horse (chestnut brown, white,
black, etc.). In addition, our results contained some unexpected surprises. The CycleGAN produced decent
results, but, as seen in Figure 11, the background of the image was also altered. Also, sometimes additional

6



Figure 9: Three bad examples of horse photographs converted to zebra photographs from our test set. In the
first image pair, the horse is not segmented, so it is not processed. In the second and third image pair, the
humans get segmented along with the horses, so they get “zebrafied”.

Figure 10: Two bad examples of zebra photographs converted to horse photographs from our test set. In the
first image pair, the results retains striping. In the second image pair, the horse’s head gets blurred beyond
recognition.

parts of the image were unnecessarily transformed (ie. people were “zebrafied”). To combat these issues,
we proposed and tested a “segmentation GAN”. This method yielded some surprising results. In most of
the cases, the mask produced by segmentation covered more area than the object itself, creating artifacts
around foreground objects. In addition, the image gradient where the segmentation ends changed sharply.
In a few cases, the converted object became blurred mixture of colors—an output for which we have no
explanation. An example of this phenomenon can be seen in Figure 11. With the soft mask, the method
described in Section , the results between the CycleGAN and the segmentation methods are averaged. This
produced good results; simultaneously generating the transfigured object while making minimal changes to
the background. Some of these results can be seen in Figure 8 and Figure 7.

However, there were a few cases in which the results were unexpected due to the training data or
segmentation. We observed many cases in which segmentation gave unexpected results. One case was where
the whole horse/zebra was not present in the image. Due to this, the segmentation did not pick up on the
whole object, leading to a partially converted zebra as seen in Figure 10. Here, the back of the zebra is the
only portion of it that was visible, and so it was only partially segmented and converted to a horse. Another
issue was when the entire horse/zebra is not segmented. In this case, the soft masking of the image erased
part of the zebra. For example, in Figure 10, the legs and head of the converted horse are missing since
segmentation did not capture them. Although there are some issues with segmentation, it did help retain the
background’s original coloring (Figure 7).

7

sec:softmask


Figure 11: The results of 3 configurations of the GAN. The original cycleGAN makes strange changes to the
water. The segmentation CycleGAN oddly fails to generate a zebra. The softmask CycleGAN generates a
zebra while making minimal changes to the background. The input image was a pair of horses taking a walk
on the beach.

5 Contributions

The work was evenly distributed. Sameer dealt mostly with the generator architecture and implementing
segmentation. Patrick implemented the discriminator, data utilities, training and testing, while also assisting
with the loss functions within the CycleGAN class. Andrew created the CycleGAN class and assisted with the
training and discriminator code. Overall, we all worked together to debug the code and and run experiments
on the Google Cloud Instance.

References

[1] F. Massa and R. Girshick, maskrcnn-benchmark: Fast, modular reference implementation of Instance
Segmentation and Object Detection algorithms in PyTorch, https://github.com/facebookresearch/
maskrcnn-benchmark, Accessed: [May 6, 2019], 2018.

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2961–2969.

[3] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial
networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1125–1134.

[4] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, CycleGAN and pix2pix in PyTorch, https://github.
com/junyanz/pytorch-CycleGAN-and-pix2pix, Accessed: [May 6, 2019], 2017.

[5] ——, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 2223–2232.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y.
Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014,
pp. 2672–2680.

8

https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

	Introduction
	Methods
	CycleGAN Specification and Training
	Mask R-CNN
	Model Architecture / Implementation
	Generator
	Discriminator
	Soft Mask


	Results
	Computation and Photo Acquisition
	monet2photo
	horse2zebra

	Discussion
	monet2photo
	horse2zebra

	Contributions

